Reliability and clinical utility of spatially constrained estimates of intrinsic functional networks from very short fMRI scans

Author:

Duda Marlena1ORCID,Iraji Armin1ORCID,Ford Judith M.23,Lim Kelvin O.4ORCID,Mathalon Daniel H.23,Mueller Bryon A.4,Potkin Steven G.5,Preda Adrian5,Van Erp Theo G. M.67,Calhoun Vince D.18

Affiliation:

1. Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, and Emory University Atlanta Georgia USA

2. Mental Health Service San Francisco Veterans Affairs Healthcare System San Francisco California USA

3. Department of Psychiatry and Weill Institute for Neurosciences University of California San Francisco San Francisco California USA

4. Department of Psychiatry University of Minnesota Minneapolis Minnesota USA

5. Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA

6. Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA

7. Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA

8. Department of Psychology Georgia State University Atlanta Georgia USA

Abstract

AbstractResting‐state functional network connectivity (rsFNC) has shown utility for identifying characteristic functional brain patterns in individuals with psychiatric and mood disorders, providing a promising avenue for biomarker development. However, several factors have precluded widespread clinical adoption of rsFNC diagnostics, namely a lack of standardized approaches for capturing comparable and reproducible imaging markers across individuals, as well as the disagreement on the amount of data required to robustly detect intrinsic connectivity networks (ICNs) and diagnostically relevant patterns of rsFNC at the individual subject level. Recently, spatially constrained independent component analysis (scICA) has been proposed as an automated method for extracting ICNs standardized to a chosen network template while still preserving individual variation. Leveraging the scICA methodology, which solves the former challenge of standardized neuroimaging markers, we investigate the latter challenge of identifying a minimally sufficient data length for clinical applications of resting‐state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated the robustness of ICN and rsFNC estimates at both the subject‐ and group‐level, as well as the performance of diagnostic classification, with respect to the length of the rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full‐length (5 min) reference time course were sufficiently approximated with just 3–3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group‐average rsFNC could be sufficiently approximated with even less data, just 2 min (r = 0.86). These results from the shorter clinical data were largely consistent with the results from validation experiments using longer time series from both simulated (30 min) and real‐world (14 min) datasets, in which estimates of subject‐level FNC were reliably estimated with 3–5 min of data. Moreover, in the real‐world data we found rsFNC and ICN estimates generated across the full range of data lengths (0.5–14 min) more reliably matched those generated from the first 5 min of scan time than those generated from the last 5 min, suggesting increased influence of “late scan” noise factors such as fatigue or drowsiness may limit the reliability of FNC from data collected after 10+ min of scan time, further supporting the notion of shorter scans. Lastly, a diagnostic classification model trained on just 2 min of data retained 97%–98% classification accuracy relative to that of the full‐length reference model. Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2–5 min show good clinical utility without significant loss of individual FNC information of longer scan lengths.

Funder

National Institute of Mental Health

National Science Foundation

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3