Modeling climate‐driven range shifts in populations of two bird species limited by habitat independent of climate

Author:

Schofield Lynn N.1ORCID,Siegel Rodney B.1,Loffland Helen L.1

Affiliation:

1. The Institute for Bird Populations Petaluma California USA

Abstract

AbstractRanges of species around the world are expected to contract in response to climate change. Species distribution models (SDMs) are a powerful tool for predicting changes in habitat availability, but the variables selected to create SDMs influence their performance. In addition to climate, habitat characteristics and species traits can play a role in predicting species distribution. In this paper, we consider how variable selection influences the accuracy of SDMs when applied to isolated subpopulations of two widely distributed bird species: great gray owl (Strix nebulosa) and willow flycatcher (Empidonax traillii). In the Sierra Nevada of California, these species are restricted largely to discrete patches of meadow habitat within a forest matrix, providing the potential to identify specific locations to target conservation efforts. We contrast predictions made by SDMs that consider climatic variables alone with those that incorporate both climate and geophysical variables. Adding geophysical variables resulted in differing model predictions. For willow flycatchers, adding geophysical variables improved predictive performance. In the case of great gray owls, models with and without geophysical variables had nearly identical performance under historical conditions but differed starkly in their predictions. The full model (climatic and geophysical variables) predicted habitat availability to decrease moderately, whereas the climate‐only model predicted nearly complete loss of favorable habitat by 2099. The climate‐only model is consistent with expectations based on previous SDMs of birds across North America, but previous studies also assumed homogeneity in species traits and range‐wide habitat requirements. The full model appears more consistent with recent trends in great gray owl numbers in the Sierra Nevada specifically, where the population has remained relatively stable over recent decades. Given contradictions in our model predictions, care should be taken when trying to apply similar SDMs to other systems.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3