Inflation of type I error rates due to differential misclassification in EHR‐derived outcomes: Empirical illustration using breast cancer recurrence
Author:
Affiliation:
1. Department of Biostatistics, Epidemiology, and Informatics, Perelman School of MedicineUniversity of Pennsylvania Philadelphia Pennsylvania USA
2. Kaiser Permanente Washington Health Research InstituteKaiser Permanente Washington Seattle WA USA
Funder
National Cancer Institute
National Institute of Allergy and Infectious Diseases
U.S. National Library of Medicine
American Cancer Society
Publisher
Wiley
Subject
Pharmacology (medical),Epidemiology
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pds.4680
Reference17 articles.
1. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research
2. Strategies for handling missing data in electronic health record derived data;Wells BJ;EGEMS (Wash DC),2013
3. Defining and measuring completeness of electronic health records for secondary use
4. Bias and efficiency loss due to misclassified responses in binary regression
5. Logistic Regression When the Outcome Is Measured with Uncertainty
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Leveraging error-prone algorithm-derived phenotypes: Enhancing association studies for risk factors in EHR data;Journal of Biomedical Informatics;2024-09
2. Guidance of development, validation, and evaluation of algorithms for populating health status in observational studies of routinely collected data (DEVELOP-RCD);Military Medical Research;2024-08-06
3. Post-Acute Cardiovascular Outcomes of COVID-19 in Children and Adolescents: An EHR Cohort Study from the RECOVER Project;2024-05-15
4. A framework for understanding selection bias in real-world healthcare data;Journal of the Royal Statistical Society Series A: Statistics in Society;2024-05-02
5. Racial/Ethnic Differences in Long-COVID-Associated Symptoms among Pediatrics Population: Findings from Difference-in-differences Analyses in RECOVER Program;2024-03-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3