Diels‐Alder Macromolecular Networks in Recyclable, Repairable and Reprocessable Polymer Composites for the Circular Economy – A Review

Author:

Griffini Gianmarco1ORCID,Rigatelli Benedetta1ORCID,Turri Stefano1ORCID

Affiliation:

1. Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano Piazza Leonardo da Vinci 32 Milano 20133 Italy

Abstract

AbstractIn the expanding field of high‐performance materials, polymer‐based thermoset composites play an important role due to their favorably‐high strength/weight ratio and their mechanical performance, thermal stability, and chemical resistance. However, their chemically‐crosslinked nature hampers their re‐processability and efficient recyclability, thus making them not compliant with the principles of the circular economy and of end‐of‐life valorization. Dynamic covalent polymers able to modify their network topology upon thermal stimulus can be considered valid alternatives to commonly used thermosets as they offer advantages in terms of recyclability and reusability, normally not achievable with conventional cross‐linked systems. Within the broad field of dynamic polymers, thermally‐triggered Diels‐Alder based materials represent reliable platforms with enormous technological and industrial potential as repairable, reusable and recyclable matrices in composites given their chemical versatility, suitable mechanical performance and ease of production and processing. In this review, a comprehensive discussion of the most recent demonstrations of the reversibility, reprocessability and recyclablability of such systems is provided, in the context of their use as polymer matrices in composites. It is hoped that this work will stimulate further discussion and research in the area of reversible polymer composites with increased functionality and extended lifetime, in view of their application in future circular economy scenarios.

Funder

Fondazione Cariplo

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3