Toughening PVC with Biocompatible PCL Softeners for Supreme Mechanical Properties, Morphology, Shape Memory Effects, and FFF Printability

Author:

Rahmatabadi Davood1,Aberoumand Mohammad1,Soltanmohammadi Kianoosh1,Soleyman Elyas1,Ghasemi Ismaeil2,Baniassadi Majid1,Abrinia Karen1,Bodaghi Mahdi3ORCID,Baghani Mostafa1

Affiliation:

1. School of Mechanical Engineering College of Engineering University of Tehran Tehran 1439957131 Iran

2. Faculty of Processing Iran Polymer and Petrochemical Institute Tehran 1497713115 Iran

3. Department of Engineering School of Science and Technology Nottingham Trent University Nottingham NG11 8NS UK

Abstract

AbstractIn this article, a first of its kind blend of polyvinyl chloride (PVC) and biocompatible polycaprolactone (PCL) is introduced by melt mixing and then 3D printed successfully via Fused Filament Fabrication (FFF). Experimental tests are carried out on PCL‐PVC blends to assess thermo‐mechanical behaviors, morphology, fracture toughness, shape‐memory effects and printability. Macro and microscopic tests reveal that PVC‐PCL compounds are miscible due to high molecular compatibility and strong interaction. This causes extraordinary mechanical properties specially for PVC‐10 wt% PCL. In addition to the desired tensile strength (45 MPa), this material has a completely rubbery behavior at ambient temperature, and its total elongation is more than 81%. In addition, due to the high formability of PVC‐PCL at ambient temperature, it has capability of being programed via different shape‐memory protocols. Programming tests show that PVC‐PCL blends have an excellent shape‐memory effect and result in 100% shape recovery. SEM results prove a high improvement of PVC printability with the addition of 10 wt% PCL. Toughened PVC by PCL is herein added to the materials library of FFF 3D printers and expected to revolutionize applications of PVC compounds in the field of biomedical 3D and 4D printing due to its appropriate thermo‐mechanical properties, supreme printability, and excellent biocompatibility.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3