Model‐free prescribed performance fast nonsingular terminal sliding mode control with practical finite‐time stability of uncertain robot manipulators

Author:

Song Tangzhong1ORCID,Fang Lijin1,Wang Huaizhen2,Zhang Yue3ORCID,Qian Yian1

Affiliation:

1. Faculty of Robot Science and Engineering Northeastern University Shenyang China

2. Institute of Shandong New Generation Information Industry Technology Inspur group Jinan China

3. Mechanical Engineering and Automation Northeastern University Shenyang China

Abstract

AbstractThis paper addresses the problem of robust and high precision trajectory tracking control of uncertain robot manipulators with prescribed performance. Time delay estimation (TDE) technique is employed to estimate system model, then a new self‐adjusting strategy (SAS) is designed to adjust TDE gain online. Prescribed performance control (PPC) method is used to guarantee transient response speed and steady‐state accuracy. Moreover, the transform function of PPC employed in this paper has unlimited domain, which greatly improves the robustness and stability of system. An improved fixed‐time dynamical system is firstly deduced and analyzed, then a new fast nonsingular terminal sliding mode surface is designed to accelerate convergence rate of tracking errors. Finally, the whole system is strictly proven to be practical finite‐time stable, which means that tracking errors can converge to a small neighborhood of zero within a uniformly bounded convergence time. Main advantages of the proposed approach include model‐free, robust, singularity‐free, faster transient response and higher steady‐state tracking precision. Experimental results carried out on the Rethink Sawyer Robot also verified the effectiveness of the proposed scheme.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3