Affiliation:
1. School of Automation Northwestern Polytechnical University Xi'an China
2. Military Research Institute Xi'an China
Abstract
AbstractUnknown model uncertainties and external disturbances widely exist in helicopter dynamics and bring adverse effects on control performance. Optimal control techniques have been extensively studied for helicopters, but these methods cannot effectively handle flight control problems since they are sensitive to uncertainties and disturbances. This paper proposes an observer‐based robust optimal control scheme that enables a helicopter to fly optimally and reduce the influence of unknown model uncertainties and external disturbances. A control Lyapunov function (CLF) is firstly constructed using the backstepping method, then Sontag's formula is utilized to design an inverse optimal controller to stabilize the nominal system. Furthermore, it is stressed that the radial basis function (RBF) neural network is introduced to establish an observer with adaptive laws, approximating and compensating for the unknown model uncertainties and external disturbances to enhance the robustness of the closed‐loop system. The uniform ultimate boundedness of the closed‐loop system is ensured using the presented control approach via Lyapunov stability analysis. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control strategy.
Subject
Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献