Self‐powered broadband kesterite photodetector with ultrahigh specific detectivity for weak light applications

Author:

Liang Guang‐Xing1,Li Chuan‐Hao1,Zhao Jun1,Fu Yi1,Yu Zi‐Xuan1,Zheng Zhuang‐Hao1,Su Zheng‐Hua1,Fan Ping1,Zhang Xiang‐Hua2,Luo Jing‐Ting1,Ding Liming3ORCID,Chen Shuo1

Affiliation:

1. Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen China

2. Institut des Sciences Chimiques de Rennes Université de Rennes Rennes France

3. Center for Excellence in Nanoscience (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS) National Center for Nanoscience and Technology Beijing China

Abstract

AbstractKesterite Cu2ZnSn(S,Se)4 (CZTSSe) is a promising candidate for photodetector (PD) applications thanks to its excellent optoelectronic properties. In this work, a green solution‐ processed spin coating and selenization‐processed thermodynamic or kinetic growth of high‐quality narrow bandgap kesterite CZTSSe thin film is developed. A self‐powered CZTSSe/CdS thin‐film PD is then successfully fabricated. Under optimization of light absorber and heterojunction interface, especially tailoring the defect and carrier kinetics, it can achieve broadband response from 300 to 1300 nm, accompanied with a high responsivity of 1.37 A/W, specific detectivity (D*) up to 4.0 × 1014 Jones under 5 nW/cm2, a linear dynamic range (LDR) of 126 dB, and a maximum Ilight/Idark ratio of 1.3 × 108 within the LDR, and ultrafast response speed (rise/decay time of 16 ns/85 ns), representing the leading‐level performance to date, which is superior to those of commercial and well‐researched photodiodes. Additionally, an imaging system with a 905 nm laser is built for weak light response evaluation, and can respond to 718 pW weak light and infrared imaging at a wavelength as low as 5 nW/cm2. It has also been employed for photoplethysmography detection of pulsating signals at both the finger and wrist, presenting obvious arterial blood volume changes, demonstrating great application potential in broadband and weak light photodetection scenarios.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3