Monodopsis subterranea is a source of α‐tocomonoenol, and its concentration, in contrast to α‐tocopherol, is not affected by nitrogen depletion

Author:

Montoya‐Arroyo Alexander1ORCID,Muñoz‐González Alejandra12ORCID,Lehnert Katja3ORCID,Frick Konstantin4ORCID,Schmid‐Staiger Ulrike5ORCID,Vetter Walter3ORCID,Frank Jan1ORCID

Affiliation:

1. Institute of Nutritional Sciences (140b) University of Hohenheim Stuttgart Germany

2. School of Food Technology University of Costa Rica San Pedro Costa Rica

3. Institute of Food Chemistry (170b) University of Hohenheim Stuttgart Germany

4. Institute of Interfacial Process Engineering and Plasma Technology University of Stuttgart Stuttgart Germany

5. Innovation Field Functional Ingredients Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Stuttgart Germany

Abstract

Abstractα‐Tomonoenols (αT1) are tocochromanols structurally related to tocopherols (T) and tocotrienols (T3), the bioactive members of the vitamin E family. However, limited evidence exists regarding the sources and biosynthesis of tocomonoenols. Nitrogen depletion increases the content of α‐tocopherol (αT), the main vitamin E congener, in microalgae, but little is known regarding its effect on other tocochromanols, such as tocomonoenols and tocotrienols. We therefore quantified the concentrations of T, T1, and T3, in freeze‐dried biomass from nitrogen‐sufficient, and nitrogen‐depleted Monodopsis subterranea (Eustigmatophyceae). The identities of isomers of αT1 were confirmed by LC–MS and GC–MS. αT was the predominant tocochromanol (82% of total tocochromanols). αT1 was present in higher quantities than the sum of all T3 (6% vs. 1% of total tocochromanols). 11′‐αT1 was the main αT1 isomer. Nitrogen depletion increased αT, but not αT1 or T3 in M. subterranea. In conclusion, nitrogen depletion increased the content of αT, the biologically most active form of vitamin E, in M. subterranea without affecting αT1 and T3 and could potentially be used as a strategy to enhance its nutritional value but not to increase αT1 content, indicating that αT1 accumulation is independent of that of αT in microalgae.

Funder

Universität Hohenheim

Deutscher Akademischer Austauschdienst

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3