Stochastic simulation of earthquake ground motions for the seismic assessment of monumental masonry structures: Source‐based vs site‐based approaches

Author:

Karimzadeh Shaghayegh1ORCID,Funari Marco F.2ORCID,Szabó Simon1ORCID,Hussaini S. M. Sajad1ORCID,Rezaeian Sanaz3,Lourenço Paulo B.1

Affiliation:

1. Department of Civil Engineering Institute for Sustainability and Innovation in Structural Engineering University of Minho ARISE Guimarães Portugal

2. School of Sustainability Civil and Environmental Engineering University of Surrey Guildford UK

3. U.S. Geological Survey Golden Colorado USA

Abstract

AbstractEarthquakes are among the most destructive natural disasters and have resulted in a massive number of fatalities and economic losses all over the world. Simulated ground motion records are valuable, particularly for regions lacking seismic stations or with a limited history of large‐magnitude earthquakes. Notably, a significant percentage of monumental masonry buildings are located in regions with limited access to real records; hence, simulated records play a paramount role in their seismic protection. However, few studies have investigated the structural response of heritage buildings via response history analyses to assess the performance of simulated earthquakes against real ones. To accomplish this, this study simulates the recorded time‐series of the 9th of July 1998 Faial earthquake in the Azores (Mw = 6.2) at four available stations, using two different simulation approaches, that is, a source‐based stochastic finite‐fault method and a site‐based broadband stochastic method. First, two masonry facades with sidewalls characterized by different slenderness levels are adopted to conduct this research. Moreover, the proposed approach is also applied to an existing monumental structure, that is, São Francisco Church, located at Horta, which was affected by damage during the Faial earthquake. Results demonstrate that both simulation approaches provide similar results in terms of structural response prediction. The proposed framework also demonstrates that a small mismatch in terms of predicted damage patterns can result in a significant relative error in terms of displacement predictions.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3