A Tool for the Rapid Seismic Assessment of Historic Masonry Structures Based on Limit Analysis Optimisation and Rocking Dynamics

Author:

Funari Marco Francesco,Mehrotra Anjali,Lourenço Paulo B.

Abstract

This paper presents a user-friendly, CAD-interfaced methodology for the rapid seismic assessment of historic masonry structures. The proposed multi-level procedure consists of a two-step analysis that combines upper bound limit analysis with non-linear dynamic (rocking) analysis to solve for seismic collapse in a computationally-efficient manner. In the first step, the failure mechanisms are defined by means of parameterization of the failure surfaces. Hence, the upper bound limit theorem of the limit analysis, coupled with a heuristic solver, is subsequently adopted to search for the load multiplier’s minimum value and the macro-block geometry. In the second step, the kinematic constants defining the rocking equation of motion are automatically computed for the refined macro-block model, which can be solved for representative time-histories. The proposed methodology has been entirely integrated in the user-friendly visual programming environment offered by Rhinoceros3D + Grasshopper, allowing it to be used by students, researchers and practicing structural engineers. Unlike time-consuming advanced methods of analysis, the proposed method allows users to perform a seismic assessment of masonry buildings in a rapid and computationally-efficient manner. Such an approach is particularly useful for territorial scale vulnerability analysis (e.g., for risk assessment and mitigation historic city centres) or as post-seismic event response (when the safety and stability of a large number of buildings need to be assessed with limited resources). The capabilities of the tool are demonstrated by comparing its predictions with those arising from the literature as well as from code-based assessment methods for three case studies.

Funder

European Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3