On a quantum inspired approach to train machine learning models

Author:

Sellier Jean Michel1ORCID

Affiliation:

1. Global AI Accelerator Ericsson Montréal Québec Canada

Abstract

AbstractIn this work, a novel technique to train machine learning models is introduced, which is based on digital simulations of certain types of quantum systems. This represents a drastic departure from the standard approach of quantum machine learning which, to this day, is based on the use of actual physical quantum systems. To provide a clear context, the field of quantum inspired machine learning is first provided. Then, we proceed with a detailed description of our proposed method. To conclude, some preliminary, yet compelling, results are presented and discussed. Although at a seminal stage, the author firmly believes that this approach could represent a valid and robust alternative to the way machine learning models are trained today.

Publisher

Wiley

Subject

General Medicine

Reference36 articles.

1. MooreGE.Cramming more components onto integrated circuits. intel.com Electronics Magazine 19 April.1965.

2. Quantum machine learning: a classical perspective

3. Quantum information with continuous variables

4. FarhiE GoldstoneJ GutmannS SipserM.Quantum computation by adiabatic evolution. arXiv:quant‐ph/0001106.2000.

5. Quantum Computation and Quantum Information

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3