Role of Human-Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System

Author:

Taga Arens1,Dastgheyb Raha1,Habela Christa1,Joseph Jessica1,Richard Jean-Philippe1,Gross Sarah K.1,Lauria Giuseppe23,Lee Gabsang14,Haughey Norman1,Maragakis Nicholas J.1

Affiliation:

1. Department of Neurology Johns Hopkins University, Baltimore, Maryland, USA

2. Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy

3. Department of Biomedical and Clinical Sciences “Luigi Sacco” University of Milan, Milan, Italy

4. Department of Neuroscience Johns Hopkins University, Baltimore, Maryland, USA

Abstract

Abstract The ability to generate human-induced pluripotent stem cell (hiPSC)-derived neural cells displaying region-specific phenotypes is of particular interest for modeling central nervous system biology in vitro. We describe a unique method by which spinal cord hiPSC-derived astrocytes (hiPSC-A) are cultured with spinal cord hiPSC-derived motor neurons (hiPSC-MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC-A enhance hiPSC-MN electrophysiological maturation in a time-dependent fashion. The sequence of plating, density, and age in which hiPSC-A are cocultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to coculture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron crosstalk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity, which confirm hiPSC-MN maturation. These findings are supported by immunocytochemistry and real-time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and coculture with neurons influences astrocyte maturation as well. Taken together, these data indicate that in a human in vitro spinal cord culture system, astrocytes support hiPSC-MN maturation in a time-dependent and species-specific manner and suggest a closer approximation of in vivo conditions. Stem Cells Translational Medicine  2019;8:1272&1285

Funder

NIH

ALS Association

Department of Defense

Johns Hopkins

National Institutes of Health

Amyotrophic Lateral Sclerosis Association

U.S. Department of Defense

Johns Hopkins University

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3