Improved application of immobilized Enterobacter cloacae into a bio‐based polymer for Reactive Blue 19 removal, an eco‐friendly advancement in potential decolorizing systems

Author:

Nazari Negin1,Jookar Kashi Fereshteh1ORCID,Nazari Niayesh1

Affiliation:

1. Department of Cell and Molecular Biology, Faculty of Chemistry University of Kashan Kashan Iran

Abstract

AbstractThe widespread use of highly complex synthetic dyes like reactive dyes in the textile industry has some adverse environmental impacts and deserves close attention. Biological treatment of these effluents utilizing various species of bacteria with remarkable efficiency in dye removal is still considered promising. Our current study deals with immobilizing an isolated bacterial strain into calcium alginate (Ca/Alg) gel beads and using it to treat pernicious pollutants like synthetic dyes. A potential Reactive Blue 19 (RB19)‐degrading Enterobacter cloacae strain A1 was isolated from the Kashan textile industry and was characterized by 16S rDNA gene sequencing. The decolorization ability of strain A1 was assessed by time‐based studies using free bacterial cells/immobilized in Ca/Alg. Based on the results of the 16S rDNA gene sequencing, it appears that strain A1 belonged to E. cloacae, with a 99.74% similarity. The findings suggest that immobilized strain A1 accomplished maximum decolorization activity compared with the free cells. The immobilized strain could utterly decompose and decolorize 0.05 mg/mL of RB19 within 48 h, while the free bacterial strain decolorized RB19 within 5 days. Moreover, Ca/Alg gel beads can maintain their efficiency for over three decolorization cycles. Further infrared spectroscopy (FTIR) and gas chromatograph mass spectrometer (GC/MS) investigation declared complete RB19 decomposition on reaction products. Artemia salina was used to investigate the toxicity of dye and its degraded metabolites. The LC50 values signified the pure dye as very toxic with 0.01 mg/mL concentration, while after‐treatment products showed no toxic effect on larvae. This immobilization technique increased the applicability of bacterial strain for dye removal. It was beneficial for the decolorization of RB19 from textile wastewater due to a remarkable reduction in time. Notably, strain A1‐immobilized beads can maintain their activity for three consecutive decolorization cycles without a considerable decrease in efficiency.Practitioner Points The remarkable capacity of immobilized Enterobacter cloacae strain A1 for Reactive Blue 19 (RB19) removal Immobilized A1 strain showed two‐fold higher removal than free one over 48 h A promising method for enhancing RB19 decolorization Decolorization was due to degradation based on UV–Vis, FTIR, and GC/MS analysis Non‐toxic posttreatment products for Artemia

Publisher

Wiley

Subject

Water Science and Technology,Ecological Modeling,Waste Management and Disposal,Pollution,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3