LMI‐based neural observer for state and nonlinear function estimation

Author:

Jeon Woongsun1ORCID,Chakrabarty Ankush2ORCID,Zemouche Ali3,Rajamani Rajesh4ORCID

Affiliation:

1. School of Electrical and Electronics Engineering Chung‐Ang University Seoul South Korea

2. Mitsubishi Electric Research Laboratories Cambridge Massachusetts USA

3. University of Lorraine, IUT Henri Poincare de Longwy, CRAN CNRS UMR 7039 Cosnes et Romain France

4. University of Minnesota ‐ Twin Cities Minneapolis Minnesota USA

Abstract

AbstractThis article develops a neuro‐adaptive observer for state and nonlinear function estimation in systems with partially modeled process dynamics. The developed adaptive observer is shown to provide exponentially stable estimation errors in which both states and nonlinear functions converge to their true values. When the neural approximator has an approximation error with respect to the true nonlinear function, the observer can be used to provide an bound on the estimation error. The article does not require assumptions on the process dynamics or output equation being linear functions of neural network weights and instead assumes a reasonable affine parameter dependence in the process dynamics. A convex problem is formulated and an equivalent polytopic observer design method is developed. Finally, a hybrid estimation system that switches between a neuro‐adaptive observer for system identification and a regular nonlinear observer for state estimation is proposed. The switched operation enables parameter estimation updates whenever adequate measurements are available. The performance of the developed adaptive observer is shown through simulations for a Van der Pol oscillator and a single link robot. In the application, no manual tuning of adaptation gains is needed and estimates of both the states and the nonlinear functions converge successfully.

Funder

National Science Foundation

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3