Effect of flux and shear rate on E. coli recovery in tangential flow filtration through a single hollow fiber

Author:

Zuponcic Jessica12,Cunha Fernanda12,Springer Grant12,Ximenes Eduardo123,Ladisch Michael R.124ORCID

Affiliation:

1. Department of Agricultural and Biological Engineering Purdue University West Lafayette Indiana USA

2. Laboratory of Renewable Resources Engineering Purdue University West Lafayette Indiana USA

3. Department of Environmental and Occupational Health Indiana University Bloomington Indiana USA

4. Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA

Abstract

AbstractPathogenic bacteria which enter a viable but non‐culturable (VBNC) state impede efforts to reach detectable concentrations required for PCR methods. This motivated a strategy for tangential flow filtration to concentrate bacteria in aqueous samples while maintaining the bacteria in a viable state, maximizing their recovery and achieving high fluxes through a single hollow fiber membrane. Filtrations were carried out for green fluorescent protein (GFP) E. coli at high shear rates (up to 27,000 sec−1) through 0.2 μm cut‐off polyethersulfone (PES) microfilter membranes or 50 kDa polysulfone (PS) ultrafilter membranes. High shear minimized bacterial attachment on membrane surfaces, which would otherwise occur due to forced convection of the particles to the membrane surface at high flux conditions. Single fiber filter modules were constructed to facilitate concentration of Escherichia coli at fluxes ranging from 55 to 4500 L m−2 h−1. The effect of high shear rates on bacterial viability was found to be minimal with bacterial losses during filtration caused principally by their accumulation on the membrane surface. Recoveries of 90% were achievable at high shear rates when the average flux was ≤300 L m−2 h−1. This corresponded to a 3‐h filtration time for a 225 mL sample through a single hollow fiber. Detectable bacteria concentrations of 1800 colony‐forming unit (CFU)/mL were achieved for starting concentrations of 140 CFU/mL.

Funder

Food and Drug Administration

U.S. Department of Agriculture

Purdue University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3