Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography

Author:

Hong Namki1ORCID,Cho Sang Wouk2,Shin Sungjae1,Lee Seunghyun1,Jang Seol A3,Roh Seunghyun1,Lee Young Han4,Rhee Yumie1ORCID,Cummings Steven R.56,Kim Hwiyoung7,Kim Kyoung Min3ORCID

Affiliation:

1. Division of Endocrinology, Department of Internal Medicine, Severance Hospital Yonsei University College of Medicine Seoul South Korea

2. Department of Integrative Medicine Yonsei University College of Medicine Seoul South Korea

3. Division of Endocrinology, Department of Internal Medicine, Yongin Severance Hospital Yonsei University College of Medicine Yongin South Korea

4. Department of Radiology and Research Institute of Radiological Science Yonsei University College of Medicine Seoul South Korea

5. Department of Epidemiology and Biostatistics University of California San Francisco CA USA

6. San Francisco Coordinating Center California Pacific Medical Center Research Institute San Francisco CA USA

7. Department of Biomedical Systems Informatics Yonsei University College of Medicine Seoul South Korea

Abstract

ABSTRACT Osteoporosis and vertebral fractures (VFs) remain underdiagnosed. The addition of deep learning methods to lateral spine radiography (a simple, widely available, low-cost test) can potentially solve this problem. In this study, we develop deep learning scores to detect osteoporosis and VF based on lateral spine radiography and investigate whether their use can improve referral of high-risk individuals to bone-density testing. The derivation cohort consisted of patients aged 50 years or older who underwent lateral spine radiography in Severance Hospital, Korea, from January 2007 to December 2018, providing a total of 26,299 lateral spine plain X-rays for 9276 patients (VF prevalence, 18.6%; osteoporosis prevalence, 40.3%). Two individual deep convolutional neural network scores to detect prevalent VF (VERTE-X pVF score) and osteoporosis (VERTE-X osteo score) were tested on an internal test set (20% hold-out set) and external test set (another hospital cohort [Yongin], 395 patients). VERTE-X pVF, osteo scores, and clinical models to detect prevalent VF or osteoporosis were compared in terms of the areas under the receiver-operating-characteristics curves (AUROCs). Net reclassification improvement (NRI) was calculated when using deep-learning scores to supplement clinical indications for classification of high-risk individuals to dual-energy X-ray absorptiometry (DXA) testing. VERTE-X pVF and osteo scores outperformed clinical models in both the internal (AUROC: VF, 0.93 versus 0.78; osteoporosis, 0.85 versus 0.79) and external (VF, 0.92 versus 0.79; osteoporosis, 0.83 versus 0.65; p < 0.01 for all) test sets. VERTE-X pVF and osteo scores improved the reclassification of individuals with osteoporosis to the DXA testing group when applied together with the clinical indications for DXA testing in both the internal (NRI 0.10) and external (NRI 0.14, p < 0.001 for all) test sets. The proposed method could detect prevalent VFs and osteoporosis, and it improved referral of individuals at high risk of fracture to DXA testing more than clinical indications alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

Funder

Amgen

Korea Health Industry Development Institute

Publisher

Oxford University Press (OUP)

Subject

Orthopedics and Sports Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3