Discovery of β‐nitrostyrene derivatives as potential quorum sensing inhibitors for biofilm inhibition and antivirulence factor therapeutics against Serratia marcescens

Author:

Wang Jiang123ORCID,Yang Jingyi34,Durairaj Pradeepraj2ORCID,Wang Wei3,Wei Dongyan3,Tang Shi3,Liu Haiqing3,Wang Dayong3ORCID,Jia Ai‐Qun13ORCID

Affiliation:

1. Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China

2. Center for Translational Research Shenzhen Bay Laboratory Shenzhen China

3. Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China

4. Hainan Branch, Shanghai Children's Medical Center, School of Medicine Shanghai Jiao Tong University Sanya China

Abstract

AbstractQuorum sensing (QS) inhibition has emerged as a promising target for directed drug design, providing an appealing strategy for developing antimicrobials, particularly against infections caused by drug‐resistant pathogens. In this study, we designed and synthesized a total of 33 β‐nitrostyrene derivatives using 1‐nitro‐2‐phenylethane (NPe) as the lead compound, to target the facultative anaerobic bacterial pathogen Serratia marcescens. The QS‐inhibitory effects of these compounds were evaluated using S. marcescens NJ01 and the reporter strain Chromobacterium violaceum CV026. Among the 33 new β‐nitrostyrene derivatives, (E)‐1‐methyl‐4‐(2‐nitrovinyl)benzene (m‐NPe, compound 28) was proven to be a potent inhibitor that reduced biofilm formation of S. marcescens NJ01 by 79%. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) results revealed that treatment with m‐NPe (50 μg/ml) not only enhanced the susceptibility of the formed biofilms but also disrupted the architecture of biofilms by 84%. m‐NPe (50 μg/ml) decreased virulence factors in S. marcescens NJ01, reducing the activity of protease, prodigiosin, and extracellular polysaccharide (EPS) by 36%, 72%, and 52%, respectively. In S. marcescens 4547, the activities of hemolysin and EPS were reduced by 28% and 40%, respectively, outperforming the positive control, vanillic acid (VAN). The study also found that the expression levels of QS‐ and biofilm‐related genes (flhD, fimA, fimC, sodB, bsmB, pigA, pigC, and shlA) were downregulated by 1.21‐ to 2.32‐fold. Molecular dynamics analysis showed that m‐NPe could bind stably to SmaR, RhlI, RhlR, LasR, and CviR proteins in a 0.1 M sodium chloride solution. Importantly, a microscale thermophoresis (MST) test revealed that SmaR could be a target protein for the screening of a quorum sensing inhibitor (QSI) against S. marcescens. Overall, this study highlights the efficacy of m‐NPe in suppressing the virulence factors of S. marcescens, identifying it as a new potential QSI and antibiofilm agent capable of restoring or improving antimicrobial drug sensitivity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3