Affiliation:
1. Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
2. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
Abstract
Serratia marcescens is an important cause of opportunistic human infections. Many, but not all, strains produce prodigiosin, a secondary metabolic, red-pigment antibiotic, the biosynthesis of which is directed by the pig gene cluster. Quorum sensing (QS) involves the production and detection of chemical signal molecules as a means to regulate gene expression in response to population cell density. Several strains of S. marcescens have previously been shown to possess an N-acyl-l-homoserine lactone (aHSL) QS system. This study aimed to determine the impact of introducing, by phage-mediated horizontal gene transfer, a biosynthetic gene cluster (pig) and a regulatory locus (aHSL QS) into strains lacking the respective trait. The pig cluster from S. marcescens ATCC 274 (Sma 274) was transferred to the non-pigmented strain, S. marcescens strain 12 (Sma 12). In the engineered strain, pigment was expressed and brought under the control of the recipient's native regulatory systems (aHSL QS and luxS). Moreover, transfer of the aHSL locus from Sma 12 to the non-QS Sma 274 resulted in the imposition of aHSL control onto a variety of native traits, including pigment production. In addition, during this study, the QS regulon of the clinical strain, Sma 12, was characterized, and some novel QS-regulated traits in S. marcescens were identified. The results have implications for the evolution and dissemination of biosynthetic and QS loci, illustrating the genetic modularity and ease of acquisition of these traits and the capacity of phages to act as vectors for horizontal gene transfer.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献