Risk prediction with machine learning and regression methods
Author:
Affiliation:
1. Department of Public Health; Erasmus MC; Rotterdam The Netherlands
2. Medical Centre Alkmaar/Inholland University; Alkmaar The Netherlands
3. Department of Development and Regeneration; KU Leuven; Leuven Belgium
Publisher
Wiley
Subject
Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability
Reference26 articles.
1. Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality;Austin;Journal of Clinical Epidemiology,2004
2. Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods?;Austin;Biometrical Journal,2012
3. Predictive accuracy of risk factors and markers: a simulation study of the effect of novel markers on different performance measures for logistic regression models;Austin;Statistics in Medicine,2013
4. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes;Austin;Journal of Clinical Epidemiology,2013
5. Statistical modeling: the two cultures;Breiman;Statistical Science,2001
Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI in interventional cardiology: Innovations and challenges;Heliyon;2024-09
2. Analysis of Bubble Flow in an Inclined Tube and Modeling of Flow Prediction;Aerospace;2024-08-11
3. A heuristic-optimized interval regression model for characterizing strength development of cemented soil subjected to varied temperatures;Construction and Building Materials;2024-08
4. Prediction models for diagnosis and prognosis of the colonization or infection of multidrug-resistant organisms in adults: a systematic review, critical appraisal, and meta-analysis;Clinical Microbiology and Infection;2024-07
5. External validation of a paediatric Smart triage model for use in resource limited facilities;PLOS Digital Health;2024-06-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3