Magnetic Resonance Elastography in the Study of Neurodegenerative Diseases

Author:

Feng Yuan1234ORCID,Murphy Matthew C.5,Hojo Emi6,Li Fei7ORCID,Roberts Neil6

Affiliation:

1. School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China

2. Department of Radiology, Ruijin Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China

3. Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China

4. National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC‐AMRT) Shanghai Jiao Tong University Shanghai China

5. Department of Radiology Mayo Clinic College of Medicine and Science Rochester Minnesota USA

6. Centre for Reproductive Health (CRH), School of Clinical Sciences University of Edinburgh Edinburgh UK

7. Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital Sichuan University Chengdu Sichuan Province China

Abstract

Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) present a major health burden to society. Changes in brain structure and cognition are generally only observed at the late stage of the disease. Although advanced magnetic resonance imaging (MRI) techniques such as diffusion imaging may allow identification of biomarkers at earlier stages of neurodegeneration, early diagnosis is still challenging. Magnetic resonance elastography (MRE) is a noninvasive MRI technique for studying the mechanical properties of tissues by measuring the wave propagation induced in the tissues using a purpose‐built actuator. Here, we present a systematic review of preclinical and clinical studies in which MRE has been applied to study neurodegenerative diseases. Actuator systems for data acquisition, inversion algorithms for data analysis, and sample demographics are described and tissue stiffness measures obtained for the whole brain and internal structures are summarized. A total of six animal studies and eight human studies have been published. The animal studies refer to 123 experimental animals (68 AD and 55 PD) and 121 wild‐type animals, while the human studies refer to 142 patients with neurodegenerative disease (including 56 AD and 17 PD) and 166 controls. The animal studies are consistent in the reporting of decreased stiffness of the hippocampal region in AD mice. However, in terms of disease progression, although consistent decreases in either storage modulus or shear modulus magnitude are reported for whole brain, there is variation in the results reported for the hippocampal region. The clinical studies are consistent in reports of a significant decrease in either whole brain storage modulus or shear modulus magnitude, in both AD and PD and with different brain structures affected in different neurodegenerative diseases. MRE studies of neurodegenerative diseases are still in their infancy, and in future it will be interesting to investigate potential relationships between brain mechanical properties and clinical measures, which may help elucidate the mechanisms underlying onset and progression of neurodegenerative diseases.Evidence Level1.Technical EfficacyStage 2.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3