Assessing craniofacial growth and form without landmarks: A new automatic approach based on spectral methods

Author:

Magnet Robin1ORCID,Bloch Kevin2,Taverne Maxime2ORCID,Melzi Simone3,Geoffroy Maya2,Khonsari Roman H.2ORCID,Ovsjanikov Maks1ORCID

Affiliation:

1. LIX, École Polytechnique, IP Paris Palaiseau France

2. Laboratoire “Forme et Croissance du Crâne”, Hôpital Necker‐Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine Université Paris Cité Paris France

3. Department of Informatics, Systems and Communication University of Milano‐Bicocca Milan Italy

Abstract

AbstractWe present a novel method for the morphometric analysis of series of 3D shapes, and demonstrate its relevance for the detection and quantification of two craniofacial anomalies: trigonocephaly and metopic ridges, using CT‐scans of young children. Our approach is fully automatic, and does not rely on manual landmark placement and annotations. Our approach furthermore allows to differentiate shape classes, enabling successful differential diagnosis between trigonocephaly and metopic ridges, two related conditions characterized by triangular foreheads. These results were obtained using recent developments in automatic nonrigid 3D shape correspondence methods and specifically spectral approaches based on the functional map framework. Our method can capture local changes in geometric structure, in contrast to methods based, for instance, on global shape descriptors. As such, our approach allows to perform automatic shape classification and provides visual feedback on shape regions associated with different classes of deformations. The flexibility and generality of our approach paves the way for the application of spectral methods in quantitative medicine.

Funder

European Research Council

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Developmental Biology,Animal Science and Zoology

Reference57 articles.

1. Geometric morphometrics: Ten years of progress following the ‘revolution’

2. Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape;Arnqvist G.;Acta Zoologica Academiae Scientiarum Hungaricae,1998

3. Attaiki S. Pai G. &Ovsjanikov M.(2021). “DPFM: Deep partial functional maps”. In:2021 International Conference on 3D Vision (3DV). IEEE pp.175–185.

4. Quantifying the Severity of Metopic Craniosynostosis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3