Comparing flow-based and anatomy-based features in the data-driven study of nasal pathologies

Author:

Schillaci Andrea,Hasegawa Kazuto,Pipolo Carlotta,Boracchi Giacomo,Quadrio MaurizioORCID

Abstract

In several problems involving fluid flows, computational fluid dynamics (CFD) provides detailed quantitative information and allows the designer to successfully optimize the system by minimizing a cost function. Sometimes, however, one cannot improve the system with CFD alone, because a suitable cost function is not readily available; one notable example is diagnosis in medicine. The application considered here belongs to the field of rhinology; a correct air flow is key for the functioning of the human nose, yet the notion of a functionally normal nose is not available and a cost function cannot be written. An alternative and attractive pathway to diagnosis and surgery planning is offered by data-driven methods. In this work, we consider the machine learning study of nasal impairment caused by anatomic malformations, with the aim of understanding whether fluid dynamic features, available after a CFD analysis, are more effective than purely geometric features at the training of a neural network for regression. Our experiments are carried out on an extremely simplified anatomic model and a correspondingly simple CFD approach; nevertheless, they show that flow-based features perform better than geometry-based ones and allow the training of a neural network with fewer inputs, a crucial advantage in fields like medicine.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3