Practical preset time fault‐tolerant control of uncertain Euler–Lagrange systems with input saturation and guaranteed performance

Author:

Hu Yunsong1,Yan Huaicheng12ORCID,Wang Meng1ORCID,Chang Yufang2,Shi Kaibo3ORCID

Affiliation:

1. Key Laboratory of Smart Manufacturing in Energy Chemical Process of the Ministry of Education East China University of Science and Technology Shanghai China

2. School of Electrical and Electronic Engineering Hubei University of Technology Wuhan China

3. School of Information Science and Engineering Chengdu University Chengdu China

Abstract

AbstractThe practical preset time fault‐tolerant control (FTC) problem is explored in this article for uncertain Euler–Lagrange systems with input saturation and guaranteed performance. To cope with the uncertainty of the Euler–Lagrange systems, the adaptive neural network (NN) is exploited to approximate the unknown continuous function. Most existing results that consider input saturation and actuator faults simultaneously need to design compensation strategies separately, which increases the complexity of control algorithms. To overcome the above obstacle, the Nussbaum gain technique is used to deal with the effects of input saturation and actuator faults in this article. Besides, with the help of error transformation technology and speed function, the proposed control algorithm can ensure that the tracking error converges within the preset time and its overshoot is constrained within the prescribed performance boundaries. Furthermore, the boundedness of all closed‐loop system signals is confirmed. Finally, comparative simulation results are depicted to highlight the superiority of the designed control algorithm.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3