Modeling the impact of tissue oxygen profiles and oxygen depletion parameter uncertainties on biological response and therapeutic benefit of FLASH

Author:

Zhu Hongyu1,Schuemann Jan2,Zhang Qixian3,Gerweck Leo E.2

Affiliation:

1. Department of Radiation Oncology Sun Yat‐sen University Cancer Center State Key Laboratory of Oncology in South China Guangzhou China

2. Department of Radiation Oncology Massachusetts General Hospital Boston Massachusetts USA

3. Department of Radiation Oncology Fudan University Shanghai Cancer Center Shanghai China

Abstract

AbstractBackgroundUltra‐high dose rate (FLASH) radiation has been reported to efficiently suppress tumor growth while sparing normal tissue; however, the mechanism of the differential tissue sparing effect is still not known. Oxygen has long been known to profoundly impact radiobiological responses, and radiolytic oxygen depletion has been considered to be a possible cause or contributor to the FLASH phenomenon.PurposeThis work investigates the impact of tissue pO2 profiles, oxygen depletion per unit dose (g), and the oxygen concentration yielding half‐maximum radiosensitization (the average of its maximum value and one) (k) in tumor and normal tissue.MethodsWe developed a model that considers the dependent relationship between oxygen depletion and change of radiosensitivity by FLASH irradiation. The model assumed that FLASH irradiation depletes intracellular oxygen more rapidly than it diffuses into the cell from the extracellular environment. Cell survival was calculated based on the linear quadratic‐linear model and the radiosensitivity related parameters were adjusted in 1 Gy increments of the administered dose. The model reproduced published experimental data that were obtained with different cell lines and oxygen concentrations, and was used to analyze the impact of parameter uncertainties on the radiobiological responses. This study expands the oxygen depletion analysis of FLASH to normal human tissue and tumor based on clinically determined aggregate and individual patient pO2 profiles.ResultsThe results show that the pO2 profile is the most essential factor that affects biological response and analyses based on the median pO2 rather than the full pO2 profile can be unreliable and misleading. Additionally, the presence of a small fraction of cells on the threshold of radiobiologic hypoxia substantially alters biological response due to FLASH oxygen depletion. We found that an increment in the k value is generally more protective of tumor than normal tissue due to a higher frequency of lower pO2 values in tumors. Variation in the g value affects the dose at which oxygen depletion impacts response, but does not alter the dose‐dependent response trends, if the g value is identical in both tumor and normal tissue.ConclusionsThe therapeutic efficacy of FLASH oxygen depletion is likely patient and tissue‐dependent. For breast cancer, FLASH is beneficial in a minority of cases; however, in a subset of well oxygenated tumors, a therapeutic gain may be realized due to induced normal tissue hypoxia.

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3