Assessing screw length impact on bone strain in proximal humerus fracture fixation via surrogate modelling

Author:

Mini Daniela1ORCID,Reynolds Karen J.1,Taylor Mark1

Affiliation:

1. Medical Device Research Institute, College of Science and Engineering Flinders University South Australia Australia

Abstract

AbstractA high failure rate is associated with fracture plates in proximal humerus fractures. The causes of failure remain unclear due to the complexity of the problem including the number and position of the screws, their length and orientation in the space. Finite element (FE) analysis has been used for the analysis of plating of proximal humeral fractures, but due to computational costs is unable to fully explore all potential screw combinations. Surrogate modelling is a viable solution, having the potential to significantly reduce the computational cost whilst requiring a moderate number of training sets. This study aimed to develop adaptive neural network (ANN)‐based surrogate models to predict the strain in the humeral bone as a result of changing the length of the screws. The ANN models were trained using data from FE simulations of a single humerus, and after defining the best training sample size, multiple and single‐output models were developed. The best performing ANN model was used to predict all the possible screw length configurations. The ANN predictions were compared with the FE results of unseen data, showing a good correlation (R2 = 0.99) and low levels of error (RMSE = 0.51%–1.83% strain). The ANN predictions of all possible screw length configurations showed that the screw that provided the medial support was the most influential on the predicted strain. Overall, the ANN‐based surrogate model accurately captured bone strains and has the potential to be used for more complex problems with a larger number of variables.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomechanical design of a new proximal humerus fracture plate using alternative materials;International Journal for Numerical Methods in Biomedical Engineering;2024-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3