Affiliation:
1. Key Laboratory of Green Chemistry and Technology Ministry of Education College of Chemistry Sichuan University Chengdu Sichuan 610064 P. R. China
Abstract
AbstractThe conversion of biomass faces the challenge of mass and heat transfer, as well as the exertion of heterogeneous catalyst, because raw biomass exists usually in solid state. In this work, the simultaneous transformation and dissolution of the three main components (hemicellulose, cellulose, lignin) in corn straw were achieved in ethanol/ valerolactone (GVL)/H2O (10 : 10 : 40, v/v/v) co‐solvent system. With the assistance of AlCl3 ⋅ 6H2O, the conversion of hemicellulose, lignin and cellulose was >96 % at 170 °C. The conversion of solid biomass into fluid, overcoming the mass transfer restrictions between solid biomass and solid catalysts, provides new raw materials to further upgrading. H2O could penetrate inside the crystalline cellulose to swell even dissolve it, while ethanol and GVL acted as media to dissolve especially the G unit in lignin. The H+ derived from AlCl3 ⋅ 6H2O hydrolysis could break the linkages of lignin‐hemicellulose and glycosidic bond in saccharides, and aluminum chloride promoted the next degradation of polysaccharides to small molecules. Consequently, as high as 33.2 % yield of levulinic acid and 42.2 % yield of furfural were obtained. The cleavage of β‐O‐4 and Cβ−Cγ bonds in lignin produced large amounts of lignin‐derived dimers and trimers. The total yield of monomeric phenols is up to 8 %.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献