Microwave Effect in Hydrolysis of Levoglucosan with a Solid Acid Catalyst for Pyrolysis‐Based Cellulose Saccharification

Author:

Nomura Takashi1ORCID,Minami Eiji1ORCID,Kawamoto Haruo1ORCID

Affiliation:

1. Graduate School of Energy Science Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 Japan

Abstract

AbstractPyrolysis‐based saccharification consisting of fast pyrolysis followed by hydrolysis of the resulting anhydrosugars such as levoglucosan is a promising method for converting cellulosic biomass into glucose that can be used for producing biofuels and biochemicals. In the present study, hydrolysis of levoglucosan was evaluated in water with a polystyrene sulfonic acid resin (a solid acid catalyst) by heating under microwave irradiation or in an oil bath at 95 °C–120 °C. When the equilibrium temperature of the solution was the same, the conversion rate of levoglucosan was greater under microwave irradiation than in an oil bath. Model experiments indicate that the sulfonyl groups of the solid acid catalyst were selectively heated by microwave irradiation. The temperature of the reaction solution in the vicinity of the catalyst was locally higher than the equilibrium temperature of the solution, which enabled hydrolysis to proceed efficiently.

Funder

JST-Mirai Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3