Molecular Engineering of Photosensitizers for Solid‐State Dye‐Sensitized Solar Cells: Recent Developments and Perspectives

Author:

Yadagiri Bommaramoni1,Kumar Kaliamurthy Ashok1,Yoo Kicheon1,Cheol Kang Hyeong1,Ryu Junyeong1,Kwaku Asiam Francis1,Lee Jae‐Joon1ORCID

Affiliation:

1. Research Center for Photoenergy Harvesting and Conversion Technology (phct) Department of Energy Materials and Engineering Dongguk University Seoul 04620 Republic of Korea

Abstract

AbstractDye‐sensitized solar cells (DSSCs) are a feasible alternative to traditional silicon‐based solar cells because of their low cost, eco‐friendliness, flexibility, and acceptable device efficiency. In recent years, solid‐state DSSCs (ss‐DSSCs) have garnered much interest as they can overcome the leakage and evaporation issues of liquid electrolyte systems. However, the poor morphology of solid electrolytes and their interface with photoanodes can minimize the device performance. The photosensitizer/dye is a critical component of ss‐DSSCs and plays a vital role in the device‘s overall performance. In this review, we summarize recent developments and performance of photosensitizers, including mono‐ and co‐sensitization of ruthenium, porphyrin, and metal‐free organic dyes under 1 sun and ambient/artificial light conditions. We also discuss the various requirements that efficient photosensitizers should satisfy and provide an overview of their historical development over the years.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3