A review on the current status of dye‐sensitized solar cells: Toward sustainable energy

Author:

Korir Benjamin K.1ORCID,Kibet Joshua K.1,Ngari Silas M.1

Affiliation:

1. Department of Chemistry Egerton University Njoro Kenya

Abstract

AbstractDye‐sensitized solar cells (DSSCs) are among the most attractive third‐generation photovoltaic technologies due to their low toxicity, versatility, roll‐to‐roll compatibility, ultralightness, and attractive power conversion efficiencies (PCEs). However, their transition from the laboratory scale to the industrial scale has been slow due to their inability to compete with silicon‐based cells in terms of efficiencies and stabilities. Research activities on DSSCs have been ongoing for several decades to improve the efficiency and cost‐effectiveness of photovoltaics but these attempts are still inadequate. Their chemical and physical properties must be refined to increase efficiency and commercialization. This review provides a concise overview of the recent advances taking place in the DSSCs research field, including molecular engineering technologies, the quest for superior carrier transport materials (CTMs), efficient sensitizers, and better electrodes. Also, this review compiles knowledge of the historical development of DSSCs, the current advancements such as control of surface morphologies, doping strategies, modeling and simulation, characterization, and recent cutting‐edge research happenings in photovoltaic research. Finally, nanostructured materials that have been used as photoelectrodes and the practical applications of DSSCs in internet of things (IoT) and portable electronics are examined to identify challenges and future advancements. The main aim of this work is to be a pathfinder for scientific researchers in this field exploring various energy harvesting materials and optimization strategies of different components of DSSCs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3