Fast Degradable and Thermally Conductive Silicone Rubber Vitrimer with Low Dielectric and UV‐Shielding Properties

Author:

Zhang Kuan1,Dang Lin1,Zhang Junliang1ORCID

Affiliation:

1. Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

Abstract

AbstractSilicone rubbers are widely employed in various fields such as electronics, electrical engineering, mobile communications, aerospace, and automotive industries. However, silicone rubbers are typically challenging to reprocess and degrade. Moreover, with the advancement of technology, higher demands are placed on its thermal conductivity and dielectric properties. In this study, diglycidyl ether terminated polydimethylsiloxane is cured by 4,4′‐dithiodibutyric acid which contains dual dynamic covalent disulfide and ester bonds with triazobicyclodecene as the ester exchange catalyst to prepare silicone rubber vitrimers (SRVs) through a casting method. The SRVs demonstrate a relatively higher intrinsic thermal conductivity of 0.26 W (m⁻1 K⁻1) compared to ≈0.20 W (m⁻1 K⁻1) of conventional silicone rubber. Besides, the SRVs exhibit very low and stable dielectric constant and dielectric loss at both low and high frequencies (X‐band). The lowest dielectric constant and dielectric loss tangent at 10 GHz are 2.75 and 0.0650, respectively. Besides, the dual dynamic covalent bonds enable the SRVs to have excellent reprocessability and fast degradability. Moreover, the SRVs reveal UV‐shielding capability, as the transmittance of the SRVs is 0% from 200 to 400 nm of UV light.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3