High‐resolution atmospheric CO2 concentration data simulated in WRF‐Chem over East Asia for 10 years

Author:

Seo Min‐Gyung1,Kim Hyun Mee1ORCID,Kim Dae‐Hui1

Affiliation:

1. Atmospheric Predictability and Data Assimilation Laboratory, Department of Atmospheric Sciences Yonsei University Seoul Republic of Korea

Abstract

AbstractIn this study, high‐resolution CO2 concentration data were generated for East Asia to analyse long‐term changes in atmospheric CO2 concentrations, as East Asia is an important region for understanding the global carbon cycle. Using the Weather Research and Forecasting model coupled with Chemistry (WRF‐Chem), atmospheric CO2 concentrations were simulated in East Asia at a resolution of 9 km for a period of 10 years (2009–2018). The generated CO2 concentration data include CO2 concentrations, biogenic CO2 concentrations, anthropogenic CO2 concentrations, oceanic CO2 concentrations, biospheric CO2 uptake, biospheric CO2 release and meteorological variables at 3‐h intervals. The simulated high‐resolution CO2 concentrations, biogenic CO2 concentrations and anthropogenic CO2 concentrations are stored in NetCDF‐4 (Network Common Data Form, version 4) format and are available for download at https://doi.org/10.7910/DVN/PJTBF3. The simulated annual mean surface CO2 concentrations in East Asia were 391.027 ppm in 2009 and 412.949 ppm in 2018, indicating an increase of 21.922 ppm over the 10‐year period with appropriate seasonal variabilities. The monthly mean CO2 concentrations in East Asia were verified using surface CO2 observations and satellite column‐averaged CO2 mole fraction (XCO2) from Orbiting Carbon Observatory 2 (OCO‐2). Based on surface CO2 observations and OCO‐2 XCO2 concentrations, the average root‐mean‐square error (RMSE) of the simulated CO2 concentrations in WRF‐Chem was 2.474 and 0.374 ppm, respectively, which is smaller than the average RMSE of the low‐resolution CarbonTracker 2019B (CT2019B) simulation. Therefore, the simulated high‐resolution atmospheric CO2 concentrations in East Asia in WRF‐Chem over 10 years are reliable data that resemble the observed values and could be highly valuable in understanding the carbon cycle in East Asia.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3