Enhancing the thermostability and catalytic activity of Bacillus subtilis chitosanase by saturation mutagenesis of Lys242

Author:

Guo Jing12ORCID,Gao Wenjun1,Zhang Xuan1,Pan Wenxin1,Zhang Xin1,Man Zaiwei12,Cai Zhiqiang12

Affiliation:

1. Laboratory of Applied Microbiology, School of Pharmaceutical Changzhou University Changzhou China

2. Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University Changzhou China

Abstract

AbstractCatalysis activity and thermostability are some of the fundamental characteristic of enzymes, which are of great significance to their industrial applications. Bacillus subtilis chitosanase BsCsn46A is a kind of enzyme with good catalytic activity and stability, which can hydrolyze chitosan to produce chitobiose and chitotriose. In order to further improve the catalytic activity and stability of BsCsn46A, saturation mutagenesis of the C‐terminal K242 of BsCsn46A was performed. The results showed that the six mutants (K242A, K242D, K242E, K242F, K242P, and K242T) showed increased catalytic activity on chitosan. The catalytic activity of K242P increased from 12971 ± 597 U mg−1 of wild type to 17820 ± 344 U mg−1, and the thermostability of K242P increased by 2.27%. In order to elucidate the reason for the change of enzymatic properties, hydrogen network, molecular docking, and molecular dynamics simulation were carried out. The hydrogen network results showed that all the mutants lose their interaction with Asp6 at 242 site, thereby increasing the flexibility of Glu19 at the junction sites of α1 and loop1. Molecular dynamics results showed that the RMSD of K242P was lower at both 313 and 323 K than that of other mutants, which supported that K242P had better thermostability. The catalytic activity of mutant K242P reached 17820.27 U mg−1, the highest level reported so far, which could be a robust candidate for the industrial application of chitooligosaccharide (COS) production.

Funder

National Natural Science Foundation of China

Key Technology Research and Development Program of Shandong Province

Publisher

Wiley

Subject

Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3