Mitigating Heavy Ion Irradiation‐Induced Degradation in p‐type SnO Thin‐Film Transistors at Room Temperature

Author:

Al-Mamun Nahid Sultan1,Rasel Md Abu Jafar1,Wolfe Douglas E.2,Haque Aman1ORCID,Schoell Ryan3,Hattar Khalid34,Ryu Seung Ho56,Kim Seong Keun56

Affiliation:

1. Department of Mechanical Engineering Penn State University University Park PA 16802 USA

2. Department of Materials Science & Engineering Penn State University University Park PA 16802 USA

3. Center for Integrated Nanotechnology Sandia National Laboratories Albuquerque NM 87185 USA

4. Department of Nuclear Engineering University of Tennessee Knoxville TN 37996 USA

5. Electronic Materials Research Center Korea Institute of Science and Technology Seoul 02791 South Korea

6. KU-KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 South Korea

Abstract

The study investigates the mitigation of radiation damage on p‐type SnO thin‐film transistors (TFTs) with a fast, room‐temperature annealing process. Atomic layer deposition is utilized to fabricate bottom‐gate TFTs of high‐quality p‐type SnO layers. After 2.8 MeV Au4+ irradiation at a fluence level of 5.2 × 1012 ions cm−2, the output drain current and on/off current ratio (Ion/Ioff) decrease by more than one order of magnitude, field‐effect mobility (μFE) reduces more than four times, and subthreshold swing (SS) increases more than four times along with a negative shift in threshold voltage. The observed degradation is attributed to increased surface roughness and defect density, as confirmed by scanning electron microscopy (SEM), high‐resolution micro‐Raman, and transmission electron microscopy (TEM) with geometric phase analysis (GPA). A technique is demonstrated to recover the device performance at room temperature and in less than a minute, using the electron wind force (EWF) obtained from low‐duty‐cycle high‐density pulsed current. At a pulsed current density of 4.0 × 105 A cm−2, approximately four times increase in Ion/Ioff is observed, 41% increase in μFE, and 20% decrease in the SS of the irradiated TFTs, suggesting effectiveness of the new annealing technique.

Funder

Division of Electrical, Communications and Cyber Systems

Defense Threat Reduction Agency

Office of Science

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3