Spectroscopic Study of the Excitonic Structure in Monolayer MoS2 under Multivariate Physical and Chemical Stimuli

Author:

Bender Viktor12,Bucher Tobias34,Mishuk Mohammad Nasimuzzaman3,Xie Yuxuan3,Staude Isabelle34,Eilenberger Falk35,Busch Kurt12ORCID,Pertsch Thomas35,Tugchin Bayarjargal N.3

Affiliation:

1. AG Theoretische Optik & Photonik Humboldt-Universität zu Berlin Newtonstraße 15 12489 Berlin Germany

2. Max-Born-Institut Max-Born-Str. 2A 12489 Berlin Germany

3. Institute of Applied Physics Abbe Center of Photonics Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany

4. Institute of Solid State Physics Abbe Center of Photonics Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany

5. Fraunhofer-Insitute for Applied Optics and Precision Engineering Albert-Einstein-Straße 7 07745 Jena Germany

Abstract

Photoluminescence (PL) spectroscopy has proven to provide deep insights into the optoelectronic properties of monolayer . Herein, a corresponding study is conducted on the excitonic properties of mechanically exfoliated monolayer under multivariate physical and chemical stimuli. Specifically, midgap exciton states that originate from lattice defects are characterized and they are compared to existing models. Through statistical data analyses of substrate‐, temperature‐, and laser‐power‐dependent measurements, a PL enhancement is revealed through physisorption of water molecules of the controversially discussed excited‐state A biexciton (). In addition, analyses of monolayer on gold substrates show that surface roughness does not account for changes in doping level within the material. Also, a shift in the electron–phonon coupling properties that arises from thin films of water that are physisorbed on top of the samples is reported.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3