Affiliation:
1. School of Mechanics and Safety Engineering Zhengzhou University Zhengzhou 450001 Henan China
2. Zhengzhou Research Institute of Mechanical Engineering Zhengzhou 450001 Henan China
Abstract
In this article, considering the thermal effects, a PN GaN/AlN heterojunction in a piezomagnetic and piezoelectric semiconductor composite fiber driven by dynamic magnetic loads is studied. The true nonlinear constitutive equations of the electric current density for the composite heterojunction are employed. Thus, a nonlinear finite‐element method (FEM) is adopted to obtain dynamic responses of the composite heterojunction, including the mechanical displacement, electric potential, and electron and hole concentrations. By comparing dynamic responses with those derived by COMSOL Multiphysics, the nonlinear FEM is verified. Based on numerical results, regulation effects of the temperature on distributions of the mechanical displacement, electron and hole concentrations, and temperature–current–voltage characteristics are discussed.
Funder
National Natural Science Foundation of China