Effect of Acceptor Traps in GaN Buffer Layer on Source/Drain Contact Resistance in AlGaN/GaN High Electron Mobility Transistors

Author:

Addagalla Vijaya Nandini Devi1ORCID,Bhavana Prasannanjaneyulu2ORCID,Karmalkar Shreepad3ORCID

Affiliation:

1. Electrical Engineering department Indian Institute of Technology Madras Chennai 600036 India

2. GlobalFoundries Bangalore 560045 India

3. Indian Institute of Technology Bhubaneswar Bhubaneswar 752050 India

Abstract

As‐grown GaN buffer layers have a significant electron concentration, which causes an increase in leakage current and a decrease in the breakdown voltage, VBR, of GaN High Electron Mobility Transistors (HEMTs). To prevent this, deep acceptor traps of density, NAT, are added to the GaN layer during growth. While a study on the effect of NAT on VBR is available in the literature, that on the effect of NAT on contact resistance, Rc, of source/drain contacts is lacking. Herein, the following is established using technology computer‐aided design simulations calibrated with measured current–voltage characteristics of ungated AlGaN/GaN structures: 1) Rc increases significantly with NAT and with the depth of the trap level from the conduction band. For trap level 2.5 eV below the conduction band, Rc doubles for an increase in NAT from 1 × 1016 to 5 × 1017 cm−3. 2) The variation of Rc with temperature is non‐monotonic. Over a temperature range of 300–450 K, Rc is nearly constant with temperature for NAT = 1 × 1016 cm−3 and decreases by 20% for NAT = 5 × 1017 cm−3, when traps are 2.5 eV below the conduction band. Also, the degradation of the transfer and output characteristics of GaN HEMTs due to a notable increase in Rc due to NAT is investigated.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3