Gallium Oxide Heterojunction Diodes for 400 °C High‐Temperature Applications

Author:

Sohel Shahadat H.1ORCID,Kotecha Ramchandra1,Khan Imran S.1,Heinselman Karen N.1,Narumanchi Sreekant1,Tellekamp M. Brooks1,Zakutayev Andriy1

Affiliation:

1. Materials, Chemical, and Computational Sciences National Renewable Energy Laboratory 15013 Denver West Blvd Golden CO 80401 USA

Abstract

β‐Ga2O3‐based semiconductor devices are expected to have significantly improved high‐power and high‐temperature performance due to its ultrawide bandgap of close to 5 eV. However, the high‐temperature operation of these ultrawide‐bandgap devices is usually limited by the relatively low 1–2 eV built‐in potential at the Schottky barrier with most high‐work‐function metals. Herein, heterojunction p‐NiO/n‐β‐Ga2O3 diodes fabrication and optimization for high‐temperature device applications are reported, demonstrating a current rectification ratio (ION/IOFF) of more than 106 at 410 °C. The NiO heterojunction diode can achieve higher turn‐on (VON) voltage and lower reverse leakage current compared to the Ni‐based Schottky diode fabricated on the same single‐crystal β‐Ga2O3 substrate, despite charge transport dominated by interfacial recombination. Electrical characterization and device modeling show that these advantages are due to a higher built‐in potential and additional band offset. These results suggest that heterojunction p–n diodes based on β‐Ga2O3 can significantly improve high‐temperature electronic device and sensor performance.

Funder

Advanced Manufacturing Office

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3