Light B Doping by Ion Implantation into High‐Purity Heteroepitaxial Diamond

Author:

Seki Yuhei1,Yoshihara Minami1,Kim Seong‐Woo2,Koyama Koji2,Hoshino Yasushi1ORCID

Affiliation:

1. Department of Physics Kanagawa University 3‐27‐1, Rokkakubashi Kanagawa‐ku Yokohama Kanagawa 221‐8686 Japan

2. Orbray Co., Ltd. 3‐8‐22, Shinden Adachi‐ku Tokyo 123‐8511 Japan

Abstract

The low‐concentration boron doping is performed from 1016 to 1018 cm−3 by ion implantation into heteroepitaxially synthesized large‐area diamond and electrical properties are investigated. Photoluminescence analysis is first carried out to clarify the optical properties of the heteroepitaxial diamond substrate. As a result, defect complexes of nitrogen‐vacancy and silicon‐vacancy are hardly detected in this substrate, suggesting that optically high‐purity diamond can be accomplished by heteroepitaxial growth. Then, the electrical properties of resistivity, mobility, carrier concentration, and conductive type by Hall effect measurements are investigated. For the samples with doping concentrations higher than 1016 cm−3, the electrical activation of implanted B acting as acceptors is confirmed. The compensation ratio for the sample with 3.5 × 1017 cm−3 concentration reaches 76%, indicating the presence of compensating donor‐like centers. With increasing the doping concentration to 3.5 × 1018 cm−3, the compensation ratio is significantly reduced to 35%. The observed mobility of the higher doped sample takes almost the ideal value observed for the sample doped by chemical vapor deposition process. It is suggested that the heteroepitaxial synthesis of large‐area and high‐purity substrates should contribute to the further development of the application to electronic, optical, and sensing devices in the future.

Funder

Research Institute for Integrated Science, Kanagawa University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3