Affiliation:
1. Institute of Physics Chemnitz University of Technology Reichenhainer Str. 70 09126 Chemnitz Germany
2. Institute of High Pressure Physics Polish Academy of Sciences Sokołowska 29 01-142 Warszawa Poland
Abstract
In group‐III‐nitride quantum wells (QWs), a strong piezoelectric field is formed. A built‐in potential from the p–n junction is working in the opposite direction depending on an externally applied voltage. Furthermore, the electric field in the QW can be partially screened by a high charge carrier density. Herein, the influence of these effects on recombination and spectrum for over 10 nm wide InGaN QWs is investigated. The very low overlap of electrons and holes would suggest inefficient devices. However, it is shown that thick QWs can be more effective and reach high optical gain. This can be explained by the screening of the electric field, resulting in a high overlap of excited electron and hole states that enable lasing. Herein, a pulsed electrical excitation scheme is used, where carrier injection at forward bias and predominant recombination at zero or reverse bias are separated in time. The interplay between the piezoelectric field and the built‐in potential on carrier recombination in dependence on an external bias voltage is observed. In particular, a strong increase of the radiative recombination rate after the trailing edge of the driving pulse is observed.
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献