Spatial and Size Distributions of Ti(C5H7O2)2[(CH3)2CHO]2 Mist Particles in a Tubular Furnace for Conformal and Uniform Deposition of Amorphous TiO2 Thin Films

Author:

Kuddus Abdul1ORCID,Sato Tomomasa2,Yokoyama Kojun3,Shirai Hajime3ORCID

Affiliation:

1. Ritsumeikan Global Innovation Research Organization Ritsumeikan University Shiga 525‐8577 Japan

2. Department of Electrical, Electronics, and Information Engineering Kanagawa University Kanagawa 221‐0802 Japan

3. Graduate School of Science and Engineering Saitama University Saitama 338‐8570 Japan

Abstract

The spatial and size distributions of titanium diisopropoxide bisacetylacetonate [(C5H7O2)2[(CH3)2CHO]2, also known as Ti(acac)2(OiPr)2] mist, diluted in CH3OH, are investigated in a tubular furnace using atmospheric‐pressure mist chemical vapor deposition (mist CVD). The focus is on the deposition of amorphous (a)‐TiO2 films with tubular furnace temperature and mesh bias as variables. When the furnace temperature reaches 350 °C, the number density of mist particles increases without significant changes in their size distribution, leading to a higher film deposition rate. Further, the deposition rate and average size of the mist particles with lower adhesion coefficient decrease with increasing spatial distance from the furnace inlet. Furthermore, applying a mesh bias results in an increase in the maximum number density of mist particles with a narrower size distribution; however, the overall film deposition rate decreases. These variations are attributed to the chemical reactivity of the mist precursors produced by pyrolysis and mesh bias. The fine mist precursors, which are strongly charged, coordinate with CH3OH and CHO groups through solvation, enhancing their chemical stability and lifetime. This process yields a dense and rigid a‐TiO2 network, improving the junction properties at the a‐TiO2/c‐Si interface.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3