Affiliation:
1. Department of Space Science and Applied Physics University of Zimbabwe Harare Zimbabwe
2. Department of Electronics Engineering National University of Science and Technology Bulawayo Zimbabwe
Abstract
A key challenge facing fabrication of nanomaterials is the ability to precisely control the surface morphology of the nanostructures through exploitation of process parameters. In this study, palladium thin films with carefully controlled surface morphologies are obtained through the careful choice of the reducing agent used during the pre‐plating activation step in the three‐step autocatalytic electroless plating consisting of 1) surface functionalization; 2) surface activation; and 3) deposition of the film onto alumina substrates. It is important to note that the reducing agents that influenced the surface morphology of the palladium thin films are employed in the pre‐plating activation step instead of the widely utilized electroless deposition step. It is revealed in the high‐resolution scanning electron microscope results that the hydrogen reducing agent yields a dense film with 3D spheroidal morphologies with an average cluster size of ≈415 nm while the hydrazine reducing agent produces a very smooth uniform surface morphology consisting of extremely small grains. The obtained results can be exploited in controlling and tailoring the surface‐dependent properties of the palladium thin film for applications in gas sensors, detectors, or palladium‐based membranes.
Funder
The World Academy of Sciences
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials