Avoiding Gallium Pollution in Close‐Coupled Showerhead Reactors, Alternative Process Routes

Author:

Mrad Mrad1,Mazel Yann1,Feuillet Guy1,Charles Matthew1ORCID

Affiliation:

1. CEA LETI Université Grenoble Alpes 38000 Grenoble France

Abstract

In contrast to the previous work which solved the problem of gallium pollution using hardware modifications, herein, the changes are examined to process conditions to reduce gallium pollution in InAlN layer. Using a model of GaN decomposition followed by gallium desorption and diffusion to the showerhead, different process conditions are used to limit either the desorption or the diffusion. Reducing the GaN growth temperature gives some improvement by reducing desorption, but affects channel mobility, likely due to increased carbon incorporation. Increasing the wafer–showerhead distance also reduces the gallium pollution, this time by a factor of around 2. Finally, using AlGaN layers instead of GaN as the channel completely removes gallium pollution, even for composition as low as 5%. It is suggested that in addition to reducing desorption due to alloying, the aluminum precursor may be acting as a getter for this gallium, and so stops it getting to the showerhead. A combination of these different approaches suggests that process conditions can significantly reduce gallium pollution in close‐coupled showerhead reactors.

Publisher

Wiley

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3