Gain Characteristics of Optically Pumped UVC Lasers with Wide AlGaN Single‐Quantum‐Well Active Regions

Author:

Cardinali Giulia1ORCID,Kölle Sebastian2ORCID,Schulz Alexander1ORCID,Susilo Norman1ORCID,Hauer Vidal Daniel1ORCID,Guttmann Martin1ORCID,Blonski Markus A.1ORCID,Römer Friedhard2ORCID,Witzigmann Bernd2ORCID,Nippert Felix1ORCID,Wagner Markus R.13ORCID,Wernicke Tim1ORCID,Kneissl Michael14ORCID

Affiliation:

1. Institute of Solid State Physics Technische Universität Berlin Hardenbergstr. 36 10623 Berlin Germany

2. Institute for Optoelectronics Friedrich‐Alexander Universität Erlangen‐Nürnberg (FAU) Konrad‐Zuse Str. 3/5 91052 Erlangen Germany

3. Paul‐Drude‐Institut für Festkörperelektronik Leibniz‐Institut im Forschungsverbund Berlin e.V. Hausvogteiplatz 5‐7 Berlin 10117 Germany

4. Ferdinand‐Braun‐Institute (FBH) Gustav‐Kirchhoff‐Str. 4 12489 Berlin Germany

Abstract

Herein, the lasing threshold and gain characteristics of ultraviolet‐C optically pumped edge‐emitting lasers with thick single‐quantum‐well (SQW) active regions are investigated by the variable‐stripe length method. Positive net modal gain is observed in lasers with AlGaN‐based SQWs with thicknesses up to 12 nm. The lasers show a reduction of the threshold power density with increasing SQW thickness, with the lowest threshold of 1.3 MW cm−2 achieved for a 9 nm SQW laser. The high gain and low threshold in lasers with thick quantum wells are attributed to lasing from excited states, where the polarization fields are screened by the carriers in the fundamental state and the barriers, thus recovering larger electron and hole wavefunctions overlap. These findings are supported by k · p simulations, and for a 9 nm SQW, the calculation predicts a contribution of the fundamental transition to the gain of 75% for non‐resonant optical excitation and below 1% for resonant optical or electrical excitation.

Funder

Leibniz-Gemeinschaft

Technische Universität Berlin

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3