Affiliation:
1. Department of Chemical Engineering, Faculty of Engineering and Technology University of Ilorin Ilorin Nigeria
2. Department of Agricultural Engineering Ladoke Akintola University of Technology Ogbomosho Nigeria
3. Department of Pure and Industrial Chemistry Nnamdi Azikiwe University Awka Nigeria
Abstract
AbstractBiochar, a solid material derived from a thermochemical process, has received significant attention due to its usefulness in various sectors. Previous studies have been conducted to improve the properties and quality of this material by altering the thermochemical processes, treating the feedstock, hybridizing the feedstock, and so forth, but little has been done on the effect of varying the reactor's configuration. This research aims to study the effect of varying the stainless‐steel‐based combustion compartment volume of a biomass‐fueled top‐lit updraft gasifier on the groundnut shell biochar. The biochar yields for reactors ranged from 34.9% to 51.2%. The sample produced in the smallest combustion compartment volume showed the highest carbon content, according to energy dispersive X‐ray spectroscopy (EDX) analysis. Potassium, another major element, decreased as the combustion compartment was reduced. Scanning electron microscopy (SEM) analysis revealed that the biochar samples produced had an irregular shape and rough surfaces, and reducing the combustion compartment volume resulted in larger particles on the surface. Fourier transform infrared (FTIR) spectroscopy analysis showed similarities and differences in peaks observed for all the samples. The biochar samples produced can find applications in wastewater treatment, energy conversion and storage, and soil amendment, and the findings contribute to the design and optimization of biomass‐based gasifiers.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献