Impact of carbonization reactor compartment size on groundnut (Arachis hypogaea) shell biochar properties

Author:

Ayanwusi Oluwatoyin Rhoda1,Abdulkareem Sulyman A.1,Emmanuel Stephen Sunday2,Iwuozor Kingsley O.3,Emenike Ebuka Chizitere3,Oyewo Opeyemi A.4,Adeniyi Adewale George1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering and Technology , 108285 University of Ilorin , Ilorin , P. M. B. 1515 , Nigeria

2. Department of Industrial Chemistry , 108285 University of Ilorin , Ilorin , P. M. B. 1515 , Nigeria

3. Department of Pure and Industrial Chemistry , Nnamdi Azikiwe University , P. M. B. 5025 , Awka , Nigeria

4. Department of Chemical Engineering, College of Science and Technology , University of South Africa , Johannesburg , South Africa

Abstract

Abstract This study investigates the impact of low-temperature top-lit updraft reactor chamber size on GNSBC yield and properties. For this study, the volumes of carbonization chamber (2,364, 2,013, 1,468, and 970 cm3) in a biomass-fueled TLUD biomass gasifier were varied, and the resulting biochar was analyzed using SEM, EDX, and FTIR. The novelty of this work lies in its investigation of the unexplored impact of carbonization reactor compartment size on groundnut shell biochar properties and yield, driven by the need to optimize biochar production efficiency and support sustainable waste management practices. The results showed that carbonization chamber size variation significantly affected GNSBC yield, with an initial increase followed by diminishing returns. An increase in the carbonization compartment size led to decreased carbonization duration, increased carbonization temperature, increased porosity, and decreased oxygen content. SEM analysis revealed consistent amorphous and multi-layered morphological features across BC samples, while EDX analysis confirmed high carbon content in the samples. FTIR spectroscopy confirmed the presence of oxygenated functional groups suitable for pollutant adsorption, supporting GNSBC’s role in environmental remediation and industrial processes. This research contributes to optimizing biochar production efficiency, advancing circular economy goals, and sustainable waste management practices.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3