A two‐stage data cleansing method for bridge global positioning system monitoring data based on bi‐direction long and short term memory anomaly identification and conditional generative adversarial networks data repair
Author:
Affiliation:
1. School of Civil Engineering Southeast University Nanjing China
2. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education Southeast University Nanjing China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
Hindawi Limited
Subject
Mechanics of Materials,Building and Construction,Civil and Structural Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stc.2993
Reference36 articles.
1. Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders
2. A wavelet-based despiking algorithm for large data of structural health monitoring
3. The State of the Art of Data Science and Engineering in Structural Health Monitoring
4. Development of sensor validation methodologies for structural health monitoring: A comprehensive review
5. Arul M. &Kareem A.(2020).Data anomaly detection for structural health monitoring of bridges using shapelet transform. arXiv preprint arXiv:2009.00470.
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Small-sample damage detection of bleacher structure based on GAN and MSS-CNN models;Structural Health Monitoring;2024-05-21
2. ADVANCEMENTS IN STRUCTURAL HEALTH MONITORING: A REVIEW OF MACHINE LEARNING APPROACHES FOR DAMAGE DETECTION AND ASSESSMENT;International Journal for Computational Civil and Structural Engineering;2024-03-28
3. Autoencoder‐based method to assess bridge health monitoring data quality;Computer-Aided Civil and Infrastructure Engineering;2024-03-24
4. Abnormal data detection for structural health monitoring: State-of-the-art review;Developments in the Built Environment;2024-03
5. Operational Modal Analysis on Bridges: A Comprehensive Review;Infrastructures;2023-12-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3