Toward data anomaly detection for automated structural health monitoring: Exploiting generative adversarial nets and autoencoders

Author:

Mao Jianxiao12,Wang Hao1ORCID,Spencer Billie F2

Affiliation:

1. Key Laboratory of C&PC Structures of Ministry of Education, Southeast University, Nanjing, China

2. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, USA

Abstract

Damage detection is one of the most important tasks for structural health monitoring of civil infrastructure. Before a damage detection algorithm can be applied, the integrity of the data must be ensured; otherwise results may be misleading or incorrect. Indeed, sensor system malfunction, which results in anomalous data (often called faulty data), is a serious problem, as the sensors usually must operate in extremely harsh environments. Identifying and eliminating anomalies in the data is crucial to ensuring that reliable monitoring results can be achieved. Because of the vast amounts of data typically collected by a structural health monitoring system, manual removal of the anomalous data is prohibitive. Machine learning methods have the potential to automate the process of data anomaly detection. Although supervised methods have been proven to be effective for detecting data anomalies, two unresolved challenges reduce the accuracy of anomaly detection: (1) the class imbalance and (2) incompleteness of anomalous patterns of training dataset. Unsupervised methods have the potential to address these challenges, but improvements are required to deal with vast amounts of monitoring data. In this article, the generative adversarial networks are combined with a widely applied unsupervised method, that is, autoencoders, to improve the performance of existing unsupervised learning methods. In addition, the time-series data are transformed to Gramian Angular Field images so that advanced computer vision methods can be included in the network. Two structural health monitoring datasets from a full-scale bridge, including examples of anomalous data caused by sensor system malfunctions, are utilized to validate the proposed methodology. Results show that the proposed methodology can successfully identify data anomalies with good accuracy and robustness, hence can overcome one of the key difficulties in achieving automated structural health monitoring.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3