Arbitrary mesh‐moving velocity‐based space‐time finite element method for large deformation analysis of solids

Author:

Shimizu Shion1ORCID,Sharma Vikas1ORCID,Fujisawa Kazunori1ORCID

Affiliation:

1. Graduate School of Agriculture Kyoto University Kyoto Japan

Abstract

SummaryThis paper presents a new velocity‐based space‐time finite element method for computing the large deformation of solids over arbitrary Lagrange/Eulerian moving meshes. The proposed method is oriented toward quasi‐static deformation problems with hypoelastic and neo‐Hookean hyperelastic constitutive models. The Cauchy stress in the weak form of the linear momentum equation is explicitly described in terms of deformation velocity through consistent time integration of objective stress rates transferred in the arbitrary moving mesh. Consequently, the resultant system equation only contains the space‐time nodal velocity as the primary unknown. An iterative algorithm for solving the discretized system equation is implemented, whereby the nonlinearities induced by geometrical change in the computational domain as well as nonlinear constitutive equations are computed in an iterative manner updating the stress and the strain over the moving mesh of the deforming domain. Three benchmark problems, such as uniform beam compression, thick‐cylinder compression with superimposed rigid body rotation and extrusion of a column involving material loss, have been solved in order to examine the accuracy of the proposed numerical scheme. The numerical results have revealed the proper computation of the stress and the displacement of the solids undergoing the large deformation and rotation over the arbitrary Lagrange/Eulerian moving meshes, and have shown the validity and applicability of the proposed method with linear convergence of the iterative algorithm.

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3