Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method

Author:

Soga K.1,Alonso E.2,Yerro A.2,Kumar K.1,Bandara S.1

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge, UK.

2. Polytechnic University of Catalonia, Barcelona, Spain.

Abstract

Traditional geotechnical analyses for landslides involve failure prediction (i.e. onset of failure) and the design of structures that can safely withstand the applied loads. The analyses provide limited information on the post-failure behaviour. Modern numerical methods are able to simulate large mass movements and there is an opportunity to utilise such methods to evaluate the risks of catastrophic damage if a landslide occurs. In this paper, various large-deformation analysis methods are introduced and their applicability for solving landslide problems is discussed. Since catastrophic landslides often involve seepage forces, consideration of the coupled behaviour of soil and pore fluid is essential. Two approaches to model soil–pore fluid coupling in large-deformation analysis using the material point method (MPM) are introduced. An example simulation is presented for each approach; one on a model levee failure and the other on a natural cut slope failure (the Selborne experiment conducted by Cooper and co-workers in 1998). In the levee failure case, MPM simulation was able to capture a complex failure mechanism including the development of successive shear bands. The simulation was also able to predict excess pore pressure generation during the failure propagation and the subsequent consolidation stage. The simulations demonstrated the importance of the dilation characteristics of soil as well as changes in geometry for the post-failure behaviour. In the Selborne case, MPM was able to simulate the progressive failure of brittle, overconsolidated clay. The evolution of shear stresses along the failure surface was also captured by the MPM. The changes in the pore pressure and the actual shape of the failure surface were simulated by the MPM. The importance of accurately modelling the shear band within the MPM framework is highlighted.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference94 articles.

1. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion

2. Material Point Method for Coupled Hydromechanical Problems

3. Modelling of landslides with the material-point method

4. Bandara, S. (2013). Material point method to simulate large deformation problems in fluid-saturated granular medium. PhD thesis, University of Cambridge, Cambridge, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3